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Abstract
A Moyal deformation quantization approach to a spherical membrane (moving
in flat target backgrounds) in the light cone gauge is presented. The physical
picture behind this construction relies on viewing the two spatial membrane
coordinates σ1, σ2 as the two phase space variables q, p, and the temporal
membrane coordinate τ as time. Solutions to the Moyal-deformed equations of
motion are explicitly constructed in terms of elliptic functions. A knowledge of
the Moyal-deformed light-cone membrane’s Hamiltonian density H(q, p, τ)

allows us to construct a time-dependent Wigner function ρ(q, p, τ) as solutions
of the Moyal–Liouville equation, and from which one can obtain the expectation
values of the operator 〈Ĥ 〉 = Trace(ρH) that define the quantum average
values of the energy density configurations of the membrane at any instant.
It is shown how a time-dependent quartic oscillator with q4, p4, q2p2 terms
plays a fundamental role in the quantum treatment of membranes and displays
an important p ↔ q duality symmetry.

PACS numbers: 0465.+e, 02.40.+m

The complete and fully satisfactory quantization program of the membrane is a notoriously
difficult, unsolved problem (to our knowledge) due to the intrinsic nonlinearities and the
influence of the membrane’s topology on its dynamics. A closed membrane can have the
topology of an arbitrary Riemann surface of any genus. Since all orientable Riemann surfaces
are cobordant, it is possible for the topology of the membrane to evolve [1] and the three-dim
world volume of the membrane could have two boundaries: one a sphere and the other a
torus. A thorough analysis of the conventional and tentative approaches to the quantization of
membranes and extendons (p-branes) can be found in the monograph [1] and [2]. The purpose
of this paper is to propose a Moyal deformation quantization approach [3, 5] to a spherical
membrane (moving in flat target backgrounds) in the light cone gauge.
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In early works by [6–9] the relationship among Moyal brackets, the large N limit of
SU(N) Yang–Mills theories, matrix models and membrane dynamics was found. The work
based on the Moyal quantization prescription [9] is equivalent to the Matrix model formulation
of membrane dynamics in the large N limit by Banks et al [12].

In [13] we have shown how p-brane actions can be obtained from the large N → ∞
limit of SU(N) (generalized) Yang–Mills theories, and which is related to the classical limit
h̄ → 0(h̄ ∼ 1/N) of the Moyal deformation of Yang–Mills theories. Consequently the Moyal
deformation quantization program is very relevant to the physics of extended objects.

On a (flat) two-dim phase space zm = x, p, the noncommutative and associative star
product of two functions A(x, p) and B(x, p) is defined in terms of the inverse �mn = −�nm

(m, n = 1, 2) of the symplectic form as

A ∗ B = A exp

(
ih̄

2
←−
∂ m �mn−→∂ n

)
B

= AB +
ih̄

2
�mn(∂mA∂nB) +

(ih̄/2)2

2!
�m1n1�m2n2

(
∂2
m1m2

A
)(

∂2
n1n2

B
)

+ · · · ; (1) (1)

when �mn depends on x, p the star product on Poisson manifolds (that can be odd-dimensional)
was provided by [4]. The Baker integral expression for the star product in phase space captures
the noncommutativity explicitly and is given by

(f ∗ g)(x, p) =
(

1

πh̄

)2 ∫
dx ′ dp′ dx ′′ dp′′ e

2i
h̄
�(x,x ′,x ′′;p,p′,p′′)f (x ′, p′)g(x ′′, p′′), (2)

where the kernel in the exponential is the phase-space area (determinant)

�(x, x ′, x ′′;p, p′, p′′) = det

⎛
⎝1 1 1

x x ′ x ′′

p p′ p′′

⎞
⎠ . (3)

The product can also be recast as

(f ∗ g)(x, p) =
(

1

πh̄

)2∫
du1 du2 dv1 dv2 e

2i
h̄
�(ui ,vi )f (x + u1, p + v1)g(x + u2, p + v2) (4)

�(ui, vi) = det

(
u1 v1

u2 v2

)
. (5)

After expanding in a Taylor series

f (x + u1, p + v1) = f (x, p) + u1∂xf + v1∂pf + · · ·
g(x + u2, p + v2) = g(x, p) + u2∂xg + v2∂pg + · · · (6)

and inserting the Taylor series expansion into the integral (4), one arrives at terms involving
delta functions leading finally to the standard expression for the star product (1).

The deformed light-cone membrane action of spherical topology moving in a flat D-dim
target background (excluding the zero modes) is

S = T

2

∫
d3σ

(
(DτX

i)∗ ∗ (DτX
i)∗ − 1

2(ih̄)2
{Xi,Xj }∗ ∗ {Xi,Xj }∗

)

= T

2

∫
d3σ

(
(DτX

i)∗(DτX
i)∗ − 1

2(ih̄)2
{Xi,Xj }∗{Xi,Xj }∗ + · · ·

)
. (7)

The ellipsis · · · in (7) denote total derivative terms whose contribution to the integral is zero
if the fields and their derivatives vanish fast enough at infinity and/or there are no spatial

2



J. Phys. A: Math. Theor. 43 (2010) 175201 C Castro

boundaries. The membrane’s tension T can be set to unity and σa = q, p, τ denote the
membrane’s three-dimensional world volume local coordinates. The D − 2 coordinates
Xi,Xj correspond to the transverse D−2 directions to the light-cone X0 ±XD coordinates in
D-dimensions. The one-dimensional gauge covariant derivative along the temporal direction
is defined by

(DτX
i)∗ = ∂Xi

∂τ
− 1

ih̄
{Aτ , X

i}∗. (8)

The deformed light-cone membrane action can be re-written as a deformed SU(∞) Yang–
Mills action in D − 1 dimensions dimensionally reduced to one temporal dimension. The
D − 2 gauge fields Ai have a one-to-one correspondence to the D − 2 transverse coordinates
Xi . The contribution of the temporal component Aτ of the gauge field increases by one
the total number of gauge fields: D − 2 + 1 = D − 1. A Yang–Mills theory in D − 1
has D − 1 − 2 = D − 3 physical degrees of freedom that match the degrees of freedom
of the three-dimensional world volume of a membrane in D-dim resulting from the three-
dimensional world volume reparametrization invariance. Therefore, the D − 1-dimensional
SU(∞) Yang–Mills action, dimensionally reduced to one temporal dimension,

SYM = − 1

4g2
YM

∫
dτ Trace((F iτ )2 + (F ij )2) (9)

has the same form as the light-cone membrane action after the trace operation for SU(∞) is
replaced by the integral

∫
dq dp. To proceed we shall make the following identifications:

σ1 ↔ q

λl

L; σ2 ↔ p

λp

L, h̄ ↔ L2, (10)

where λl, λp are a judicious length and momentum scale not necessarily the same as the Planck
scale L and Planck momentum which are introduced to render σ1, σ2 with length dimensions.
Therefore, the Moyal star products A(σ1, σ2) ∗ B(σ1, σ2) will be defined as in equation (1) by
replacing q, p, h̄ for σ1, σ2, L

2, respectively, and expanding all the terms in suitable powers of
L2. The dimensions of Aτ in (8) will be set to be those of length instead of the conventional
length−1.

The Yang–Mills formulation of the light-cone spherical membrane action moving in flat
target spacetime backgrounds leads to the following deformations of the equations of motion
(DμFμν)∗ = 0 dimensionally reduced to one temporal dimension:

(DτF
τj + DiF

ij )∗ = 0 ⇒ gττ ∂τ (∂τX
j − (iL2)−1{Aτ ,X

j }∗) − gττ (iL2)−1{Aτ , ∂τX
j

− (iL2)−1{Aτ ,X
j }∗}∗ − (iL2)−2{Xi, {Xi,Xj }∗}∗ = 0 (11a)

and the non-Abelian analog of the Gauss law

(DiF
iτ )∗ = 0 ⇒ gττ (iL2)−1{Xi, ∂τX

i − (iL2)−1{Aτ ,X
i}∗}∗ = 0, (11b)

with gττ = −1; gij = δij . We will firstly find solutions to the deformed light-cone membrane
equations of motion (to the lowest order in powers of L) of the expansion of the Moyal star
products in equations (11), and afterward we turn our attention to the solutions involving
higher powers of L associated with the full fledged Moyal deformations.

In order to find a family of solutions to equations (11) to the lowest order in powers of
L, in the particular case when there are D − 2 = 3 transverse direction Xi (corresponding
to a membrane embedded in D = 5), we will invoke the ansatz based on the separation of
variables

Xi(σ1, σ2, τ ;L) = f i(τ )Y i(σ1, σ2;L), no sum over repeated indices (12)

3
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that leads to real solutions. The deformed equations of motion can be simplified considerably
if (i) one chooses the temporal gauge Aτ = 0, and (ii) if one invokes the additional SU(2)

Lie–Moyal algebraic relations

{Y i, Y j }∗ = iLεijkY k; i, j, k = 1, 2, 3, (13)

where L is a suitable length parameter that must be introduced in order to match units in both
sides of (13). After invoking the SU(2) algebraic relations (13) in equations (11), setting
gττ = −1 and εijkεikl = −2δ

j

l , the equations of motion of the deformed light-cone membrane
(11a), to the lowest order in L, become

Y j d2f j (τ )

dτ 2
− 2

L2
f j (τ )Y j

∑
i �=j

(fi)
2(τ ) = 0. (14)

One can reabsorb the λ−2 = (L/
√

2)−2 factor in the second term of (14) into the temporal
variable by a re-scaling τ → τ

λ
= τ̃ such that f i(τ ) = f i(λτ̃ ) = f̃ i(τ̃ ). Upon doing so, after

factoring out Y j �= 0 and dropping the tilde symbols for convenience, equations (14) become

d2f1(τ )

dτ 2
− f1(τ )[(f2)

2(τ ) + (f3)
2(τ )] = 0 (15a)

d2f2(τ )

dτ 2
− f2(τ )[(f3)

2(τ ) + (f1)
2(τ )] = 0 (15b)

d2f3(τ )

dτ 2
− f3(τ )[(f2)

2(τ ) + (f1)
2(τ )] = 0. (15c)

The other equation

{fi(τ )Yi(σ1, σ2;L),
df i(τ )

∂τ
Y i(σ1, σ2;L)}∗ = 0 (16)

is trivially satisfied fi(τ )(df i(τ )/dτ){Yi, Y
i}∗ = 0 in a flat target background ημν =

diag(−1, 1, 1, 1) since

{Yi, Y
i}∗ = {ηikY

k, Y i}∗ = {Y i, Y i}∗ = 0. (17)

The solutions to equations (15) are given in terms of the elliptic functions

f1 = ikcn(τ ; k); f2 = ksn(τ ; k); f3 = −idn(τ ; k), (18)

where 0 < k < 1 is the modulus. The functions f1, f2, f3 obey similar equations as those
obtained for the Euler-top equations of motion:

df1

dτ
= f2f3; df2

dτ
= f3f1; df3

dτ
= f1f2 (19)

and which can be verified by a simple inspection due to the expressions for the derivatives of
the elliptic functions given by

d(sn)

dτ
= cndn; d(cn)

dτ
= −sndn; d(dn)

dτ
= −k2sncn. (20)

When one differentiates w.r.t τ the expressions on both sides of equation (19) one arrives
precisely at equations (15) which we intended to solve in the first place. Therefore, equations
(15) can be integrated leading to the solutions (18) given in terms of the three elliptic functions.
We note that two of the solutions, f1, f3, are purely imaginary (for real modulus k) and f 2 is
real-valued. This is no accident as we shall see below. The next step is to find a family of

4
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solutions to the classical SU(2) Lie–Poisson-like algebraic relations obtained from the lowest
order terms of the expression (iL2)−1{Y i, Y j }∗ and given by

{Y i, Y j }PB = εijk Y k

L
⇒ {Ỹ i , Ỹ j }PB = εijkỸ k, Ỹ = LY. (21)

The solutions are

Y 1 = i

4

1

L
[(σ1)

2 − (σ2)
2]; Y 2 = 1

4

1

L
[(σ1)

2 + (σ2)
2]; Y 3 = − i

2

1

L
σ1σ2. (22)

The solutions (12) are not unique due to the symmetry of equations (11a) and (11b)
under Moyal-deformed area-preserving diffs {q ′(q, p; h̄), p′(q, p; h̄)}∗ = 1. Hence, given
a set of solutions (12) in the gauge Aτ = 0, one can find another set of solutions such
that under infinitesimal Moyal-deformed area-preserving diffs the gauge field transforms as
δξAτ = ∂τ ξ + {ξ,Aτ }∗ and the coordinate functions transform as δξX

k = {ξ,Xk}∗.
Finally, the sought-after solutions after inserting the scaling (τ/λ) = τ̃ back into the

solutions where λ = L√
2

(L is set to the Planck scale) are given by

X1(σ1, σ2, τ ) = f1

(τ

λ

)
Y 1(σ1, σ2) = ikcn

(τ

λ
; k

) i

4

1

L
[(σ1)

2 − (σ2)
2]

= − 1

4L
kcn

(τ

λ
; k

)
[(σ1)

2 − (σ2)
2]; λ = L√

2
. (23a)

Despite that f1(
τ
λ
) was imaginary one still obtains a real-valued solution for the coordinate

X1. Real-valued results for X2, X3 also occur:

X2(σ1, σ2, τ ) = f2

(τ

λ

)
Y 2(σ1, σ2) = 1

4L
ksn

(τ

λ
, k

)
[(σ1)

2 + (σ2)
2] (23b)

X3(σ1, σ2, τ ) = f3

(τ

λ

)
Y 3(σ1, σ2) =

[
−idn

(τ

λ
, k

)] [
− i

2

1

L
σ1σ2

]

= − 1

2L
dn

(τ

λ
, k

)
σ1σ2. (23c)

Therefore, to sum up, we have found real-valued solutions (equations (23)) to the (classical,
lowest order) equations of motion associated with the light-cone spherical membrane action
when the target 5D spacetime background is f lat and the temporal gauge Aτ = 0 is chosen.
When the temporal dependence for all the coordinates Xi = f (τ)Y i (i = 1, 2, 3) is fixed in
terms of a single function f = f1 = f2 = f3, one ends up with a differential equation of the
form

d2f (τ)

dτ 2
− 2f 3(τ ) = 0. (24)

Multiplying both sides of (24) by f ′ = (df/dτ) gives

f ′ df ′

dτ
− 2f 3 df

dτ
= 0 ⇒ f ′ df ′ − 2f 3 df = 0. (25)

Integrating (25) yields

1

2

(
df

dτ

)2

− 1

2
f 4 = β ⇒ (26)

∫
df√

2β + f 4
=

∫
dτ = τ, (27)

5



J. Phys. A: Math. Theor. 43 (2010) 175201 C Castro

where β is an arbitrary constant of integration. The elliptic integral on the left is a very
complicated expression of f leading to an implicit relation of the form τ = τ(f ) which must
be inverted in order to obtain the expression for f = f (τ). Thus the expression for f = f (τ)

is not analytic in this case. The integral (27) can be simplified enormously if β = 0, leading to
−(1/f ) = τ ⇒ f (τ) = −(1/τ). However, in this case, one arrives at two purely imaginary
solutions for X1, X3 and one real solution for X2. To sum up, the real-valued solutions (23)
involving the three separate elliptic functions are physically more appealing than the latter
complex solutions. Elliptic functions also appeared in solutions to the SU(∞) Moyal–Nahm
equations [10, 15].

Having found solutions to the deformed light-cone membrane equations of motion to the
lowest order in powers of L (‘classical’ limit), we turn our attention to the solutions involving
higher powers of L associated with the full-fledged Moyal deformations. In order to do so we
shall perform an expansion in powers of L2 (since the role of h̄ corresponds to L2 as explained
in equation (10)) of the form

Xi(σ1, σ2, τ ;L) = f i
(τ

λ

)
Y i(σ1, σ2;L) = f i

(τ

λ

) 1

L

∞∑
n=0

Y i
n(σ1, σ2)(L

2)n, (28)

where the temporal functions f i(τ/λ) are given in terms of the elliptic functions. The Y i

spatial functions are solutions to the equations
1

iL2
{Y i(σ1, σ2;L), Y j (σ1, σ2, L)}∗ = 1

iL2
iεijkLY k(σ1σ2;L). (29)

Inserting the terms in the expansion (28) into the above equations (29) allows us to iteratively
solve for the components Y i

n(σ1, σ2) order by order in powers of L2n as follows. The solutions
to the lowest order Y i

0(σ1, σ2) have already been obtained in equations (22) (they were quadratic
in σ1, σ2). The solutions for Y i

1(σ1, σ2) are obtained by solving the equations

εijkY k
1 = (

∂σ1Y
i
1

)(
∂σ2Y

j

0

)
+

(
∂σ1Y

i
0

)(
∂σ2Y

j

1

) − (
∂σ2Y

i
1

)(
∂σ1Y

j

0

) − (
∂σ2Y

i
0

)(
∂σ1Y

j

1

)
(30)

after inserting the known solutions Y i
0(σ1, σ2) obtained in equations (22). Having solved for

Y i
1(σ1, σ2) in equations (30) ( i, j, k = 1, 2, 3) the next order solutions Y i

2(σ1, σ2) are obtained
by solving the equations

εijkY k
2 = − 1

24

((
∂3
σ1

Y i
0

)(
∂3
σ2

Y
j

0

)
+ 3

(
∂σ1∂

2
σ2

Y i
0

)(
∂σ2∂

2
σ1

Y
j

0

)) − σ1 ↔ σ2

+
(
∂σ1Y

i
2

)(
∂σ2Y

j

0

)
+

(
∂σ1Y

i
0

)(
∂σ2Y

j

2

)
+

(
∂σ1Y

i
1

)(
∂σ2Y

j

1

) − σ1 ↔ σ2. (31)

Inserting the solutions for Y i
0(σ1, σ2), Y

i
1(σ1, σ2) into equations (31) allows one to solve

for Y i
2(σ1, σ2). Repeating this process for the next order in powers of L2, and so forth via an

iterative procedure, one can solve in principle for Y i
n. Hence, a knowledge of the coefficient

functions Y i
n(σ1, σ2) in the expansion (28) of Y i(σ1, σ2;L) yields the solutions to the Moyal

deformations of the SU(2) Lie-algebraic equations in (29), and consequently to the solutions
Xi(σ1, σ2, τ ;L) of the full fledged Moyal deformations of the light-cone spherical membrane
equations of motion in a 5D flat target spacetime background in the temporal gauge Aτ = 0.
Solutions to the full-fledged Moyal deformed equations for X could turn out to be complex-
valued despite that solutions to the lowest order in L (23) were found to be real-valued.
Therefore, one needs to verify this by an explicit computation.

To proceed with the Moyal quantization of the bosonic membrane one must find the
quantum operators X̂i corresponding to the c-numbers Xi(σ1, σ2, τ ;L). Before doing so, to
simplify matters, we will recall the correspondence

σ1 ↔ q

λl

L; σ2 ↔ p

λp

L, h̄ ↔ L2, (10)

6
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so we can work once again with the usual variables q, p and h̄ in the Moyal deformation
quantization procedure in phase spaces. The operator Ŷ ↔ Y (q, p; h̄) correspondence is [3]

Ŷ k(q̂, p̂) =
∫

dξ dη dq dp ei[ξ(p̂−p)+η(q̂−q)]Y k(q, p; h̄) ⇒

Y k(q, p; h̄) =
∫

dξ dηTrace(e−i[ξ(p̂−p)+η(q̂−q)]Ŷ k(q̂, p̂))

=
∫

dy e
−2iπpy

h̄ 〈q + y|Ŷ k(q̂, p̂)|q − y〉. (32)

Using the completeness relation, the orthonormality conditions∑
m=1

|�m >< �m| = 1;
∫

dq�∗
m(q)�n(q) = δmn

and

〈q + y|�m〉 = �m(q + y); 〈�n|q − y〉 = �∗
n(q − y). (33)

One can rewrite

Y k(q, p; h̄) =
∫

dy〈q + y|Ŷ k|q − y〉 e
−2π ipy

h̄

=
∫

dy〈q + y|�m〉〈�m|Ŷ k|�n〉〈�n|q − y〉 e
−2π ipy

h̄

=
∫

dy�m(q + y)Y k
mn�

∗
n(q − y) e

−2π ipy

h̄ . (34)

The lower/upper limits of the definite integrals in (34) are −∞, +∞, respectively. The matrix
elements are defined as

Y k
mn = 〈�m|Ŷ k(q̂, p̂)|�n〉 =

∫ ∞

−∞
dq�∗

m(q)Ŷ

(
q;−ih̄

∂

∂q

)
�n(q) (35)

by replacing the p̂ operator inside X̂k by the differential −ih̄∂q acting on �n(q). Hence, to
sum up, one can write the coordinate Xk/matrix Xk

mn correspondence as

Xk(q, p, τ ; h̄) = f k(τ )Y k(q, p; h̄) = f k(τ )

∫ +∞

−∞
dy�m(q + y)Y k

mn�
∗
n(q − y) e

−2π ipy

h̄

=
∫ +∞

−∞
dy�m(q + y)Xk

mn(τ )�∗
n(q − y) e

−2π ipy

h̄ ;Xk
mn(τ ) = f k(τ )Y k

mn. (36)

Despite that the solutions (36) have a formal similarity to the solutions of the SU(∞) Moyal–
Nahm equations [10] they are very different since the infinite number of functions �m(q) for
m = 1, 2, 3, . . . are not the entries of a column matrix with a finite number of components,
as it was in the case of [10] by using spinors. Secondly, the large N × N matrices (N → ∞)
Xk

mn, for k = 1, 2, 3, are not the gamma matrices γ k in four dimensions.
By recurring to the relation [11]

e
−2π ipy

h̄ f (q) ∗ e
−2π ipy′

h̄ g(q) = e
−2π ip(y+y′)

h̄ f (q + y ′)g(q − y) (37)

in the evaluation of Y i1 ∗ Y i2 , where Y i(q, p; h̄) is given by equation (34), after some
algebra involving a change of integration variables from y, y ′ to the new set of variables
u = y +y ′; v = q +y −y ′ (where q is interpreted as a parameter), and using the normalization
condition ∫

d(q + y − y ′)�m(q + y − y ′)�∗
s (q + y − y ′) = δms, (38)

7
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one can explicitly construct the Weyl–Wigner–Groenewold–Moyal (WWGM) map of the
product of two Weyl ordered operators Ŷ i1(q̂, p̂)Ŷ i2(q̂, p̂) onto the star product of their
symbols Y i1(q, p; h̄) ∗ Y i2(q, p; h̄) as follows:

W[Ŷ i1(q̂, p̂)Ŷ i2(q̂, p̂)] = (Y i1 ∗ Y i2)(q, p; h̄)

=
∫

dy dy ′�m(q + y − y ′)Y i1
mn�

∗
n(q − y − y ′)�r(q + y + y ′)

× Y i2
rs�

∗
s (q + y − y ′) e

−2π ip(y+y′)
h̄

=
∫

d(y + y ′)�r(q + y + y ′)(Y i2Y i1)rn�
∗
n(q − y − y ′) e

−2π ip(y+y′)
h̄

=
∫

dy ′′〈q + y ′′|Ŷ i1(q̂, p̂)Ŷ i2(q̂, p̂)|q − y ′′〉 e
−2π ipy′′

h̄ ; y + y ′ = y ′′.

(39)

By induction, one can prove that

Y i1 ∗ Y i2 ∗ Y i3 =
∫

dy〈q + y|Ŷ i1 Ŷ i2 Ŷ i3 |q − y〉 e
−2π ipy

h̄

=
∫

dz�m(q + z)(Y i3Y i2Y i1)mn�
∗
n(q − z) e

−2π ipz

h̄ , (40)

etc. Notice the reversal in the ordering of the matrices Y i
mn on the rhs of (40) with respect to

the ordering of the Y i(q, p; h̄) on the lhs of (40).
The quantum equations of motion of the membrane in the light-cone gauge are

Dτ F̂
τj

+ DiF̂
ij = 0 ⇒ gττ ∂τ (∂τ X̂

j − (ih̄)−1[Âτ , X̂
j ]) − gττ (ih̄)−1[Âτ , ∂τ X̂

j

− (ih̄)−1[Âτ , X̂
j ]] − (ih̄)−2[X̂i, [X̂i, X̂j ]] = 0 (41)

DiF̂
iτ = 0 ⇒ gττ (ih̄)−1[X̂i, ∂τ X̂

i − (ih̄)−1[Âτ , X̂
i]] = 0 (42)

and the solutions X̂j are given by the WWGM inverse map W−1[Xk(q, p, τ ; h̄)] defined
explicitly by equation (32) where Xk(q, p, τ ; h̄) are the solutions to the Moyal deformed
membrane equations of motion (11a), (11b) constructed in equation (28) when Aτ = 0.

The light-cone-gauge Hamiltonian for a spherical membrane moving in a flat 5D target
spacetime background (omitting the zero modes) is [1]

H =
∫

d2σ

(
1

2
P iPi +

1

4
{Xi,Xj }PB{Xi,Xj }PB

)
; i, j = 1, 2, 3. (43)

Note that the integration variables in (43) correspond to the spatial σ1, σ2 ones since the
Hamiltonian ‘charge’ H is defined for fixed-times, i.e. it is defined over a spatial (hyper)surface.
It has the same form as the Hamiltonian associated with a SU(∞) Yang–Mills theory in 4D
dimensionally reduced to one temporal dimension:

H = Trace

(
1

2

(
DAi

Dτ

)2

+
1

4
[Ai(τ), Aj (τ )][Ai(τ), Aj (τ )]

)
; i, j = 1, 2, 3. (44)

The Trace operation for SU(∞) has a correspondence with the integral
∫

d2σ ↔ ∫
dq dp.

The SU(∞) Lie-algebra-valued gauge fields given by Ai(τ) = Aa
i Ta , with Ta being the

N2 −1 generators of SU(N), in the N → ∞ limit have a one-to-one correspondence with the
membrane coordinates Xi(τ, q, p); the SU(∞) Lie-algebra commutators [Ai,Aj ] correspond

8
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to the Poisson brackets {Xi,Xj }PB , and
(

DAi(τ)

Dτ

)2
correspond to the P iPi terms. The above

correspondence between (43) and (44) can be made more precise by invoking the WWGM
correspondence between operators and their symbols in phase space:

W(P̂ i) = W

(
DX̂i

Dτ

)
= P i(q, p, τ ; h̄)

= dXi(q, p, τ ; h̄)

dτ
− 1

ih̄
{Aτ , X

i(q, p, τ ; h̄)}∗ (45)

in the temporal gauge Aτ = 0 ⇒ DτX̂
k = ∂τ X̂

k = P̂ k:

W([X̂i, X̂j ][X̂i, X̂j ]) = {Xi,Xj }∗ ∗ {Xi,Xj }∗. (46)

From the relations (46) one can establish the WWGM correspondence between the quantum
Hamiltonian (density) operator Ĥ (q̂, p̂, τ ) and its symbol H(q, p, τ ; h̄) :

Ĥ (q̂, p̂, τ ) =
(

1

2
P̂ i P̂i +

1

4(ih̄)2
[X̂i, X̂j ][X̂i, X̂j ]

)
(q̂, p̂, τ ; h̄) (47)

W(Ĥ ) = H(q, p, τ ; h̄) = 1

2
P i ∗ Pi +

1

4(ih̄)2
{Xi,Xj }∗ ∗ {Xi,Xj }∗. (48)

The quantity (48) is being referred as a Hamiltonian ‘density’ since it is its integral
∫

d2σ [· · ·]
in (43) that defines the light-cone membrane’s Hamiltonian in the classical limit. Explicit
solutions (when the temporal gauge Aτ = 0 is chosen) for the light-cone membrane
coordinate functions Xi(q, p, τ ; h̄) = f i(τ/λ)Y i(q, p; h̄) were presented in equations (28);
the expression for f i(τ/λ) are given by the elliptic functions as displayed in equations (23)
and the functions Y i(q, p, h̄) obeying the SU(2) Lie–Moyal equations (29) can be determined
via an iterative procedure as outlined in equations (30), (31). The momentum functions
P i(q, p, τ ; h̄) = (df i(τ/λ)/dτ)Y i(q, p; h̄) are also determined. Hence, a time-dependent
Moyal Hamiltonian (density) H(q, p, τ ; h̄) in (48) can explicitly be constructed to any order
in powers of h̄ (in powers of L2) based on the particular class of solutions found in (28) to the
Moyal deformed membrane equations of motion (11a), (11b).

For example, to the lowest order, the positive definite Hamiltonian density (48) based on
the solutions (28) is

H0(q, p, τ ) = A(τ)p4 + B(τ)q4 + C(τ)p2q2, (49)

where A(τ), B(τ), C(τ) are known functions involving sums of products of the squares of
elliptic functions. The Hamiltonian density (49) has a similar form as a time-dependent quartic
harmonic oscillator with the key difference in the quartic momentum p4 term instead of the
standard quadratic one p2. Before writing down the Schrodinger equation associated with H0

in (49), one must first perform a Weyl-ordering of the p2q2 term in H0 as follows:

p2q2 → 1
6 (p2q2 + q2p2 + pqpq + qpqp + pq2p + qp2q) (50a)

and afterward replace p → −ih̄∂/∂q in order to write the time-dependent Schrodinger
equation Ĥ (q, p = −ih̄∂q, τ )� = ih̄(∂�/∂τ). For example, the term p2q2� →
−h̄2∂2

q (q2�) = −h̄2(2� + q2∂2
q� + 4q∂q�). In the Heisenberg formulation of QM, the

operator equations of motion are

dq̂

dτ
= (ih̄)−1[Ĥ0, q̂]; dp̂

dτ
= (ih̄)−1[Ĥ0, p̂] ⇒

q̂(τ ) = e−i/h̄
∫

Ĥ0dτ q̂(τ = 0) ei/h̄
∫

Ĥ0dτ ; p̂(τ ) = e−i/h̄
∫

Ĥ0dτ p̂(τ = 0) ei/h̄
∫

Ĥ0dτ . (50b)

9
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In the WWGM formulation of QM, the time-dependent Wigner function (the ensemble’s
diagonal density matrix in phase space) for a pure state is defined as

ρnn(q, p, τ ; h̄) =
∫

dy�∗
n(q − y, τ )�n(q + y, τ ) e

−2π ipy

h̄ ; no sum over n. (51)

The Moyal analog of the Liouville equations is

∂ρnn(q, p, τ ; h̄)

∂τ
= (ih̄)−1{H, ρnn}∗ = (ih̄)−1(H ∗ ρnn − ρnn ∗ H) (52)

and have a direct physical correspondence with the time-dependent Schrodinger equation
Ĥ (τ )� = ih̄(∂�/∂τ) ⇒ �(q, τ) = (e−i/h̄

∫
Ĥ (τ )dτ )�(q, τ = 0). From (52) one can infer

that the temporal evolution of ρ in terms of the star-exponential is

ρ(q, p, τ ; h̄) = (e
−i/h̄

∫
H(τ )dτ

∗ ) ∗ ρ(q, p, τ = 0; h̄) ∗ (e
i/h̄

∫
H(τ )dτ

∗ ), (53)

where the star-exponential is eF
∗ = 1 + F + 1

2!F ∗ F + 1
3!F ∗ F ∗ F . . ..

The expectation values of the quantum Hamiltonian operator can be written in terms of
an integral involving the time-dependent Wigner function ρnn(q, p, τ ; h̄) as

〈�n|Ĥ (τ )|�n〉 =
∫

dqdpH(q, p, τ ; h̄)ρnn(q, p, τ ; h̄)∫
dqdpρnn(q, p, τ ; h̄)

. (54)

The diagonal elements 〈�n|Ĥ (τ )|�n〉 correspond to the expectation values of the light-cone
membrane’s energy (density) configurations associated with the quantum states |�n > at a
given instant of time τ . In order to evaluate the integrals in (54) one needs to solve the
Moyal–Liouville equations (52). If, and only if, the ρnn were time independent, the solutions
would have simplified enormously because if ∂τρnn = 0 ⇒ {H, ρnn}∗ = 0 ⇒ H ∗ ρnn =
ρnn∗H = Enρnn and one would have recovered the energy (density) eigenvalues (real numbers)
corresponding to the eigenfunctions of the double-star differential equations. However, in the
time-dependent case the situation changes considerably. In this case one may propose the
following solutions to the differential equations:

H(q, p, τ ; h̄) ∗ ρnn(q, p, τ ; h̄) = λ1,n(τ )ρnn(q, p, τ ; h̄); no sum over n

ρnn(q, p, τ ; h̄) ∗ H(q, p, τ ; h̄) = λ2,n(τ )ρnn(q, p, τ ; h̄); λ1,n(τ ) �= λ2,n(τ ),
(55)

such that the solutions to the Moyal–Liouville equations (52) are given in terms of the initial-
valued density ρnn(q, p, τ = 0; h̄) and the right/left ‘spectral’ functions λ1(τ ), λ2(τ ) as
follows:

ρnn(q, p, τ ; h̄) = (e−i/h̄
∫
(λ1,n(τ )−λ2,n(τ )) dτ )ρnn(q, p, τ = 0; h̄). (56)

To finalize one should mention that the proper treatment of star products in curved phase spaces
involves the Fedosov star products [14]. Since the spherical membrane is not flat one should
replace the Moyal star products for Fedosov star products and/or properly defined covariant
star products compatible with the curved two-dimensional spatial surface. Furthermore,
a Moyal treatment in field theory [16] is also possible here to deal with the membrane
deformation quantization procedure by working with the canonical pair of conjugate field
variables P i,Xi : the Hamiltonian functional H [P,X] of equation (43) and the Wigner
density functional ρ[P,Q]. By replacing P → −i(δ/δX) ( h̄ = 1) in equation (43), the
Schrodinger wavefunctional differential equation will be of the form∫

d2σ ′
(

− δ2

δXi(σ ′, τ )2
+ {Xi,Xj }σ ′ {Xi,Xj }σ ′

)
�[Xi(σ ′, τ )] = E�[Xi(σ, τ )], (57)

where the integration domain on the lhs of (54) is of the form
∫ σ1

0 dσ ′
1

∫ σ2

0 dσ ′
2. For a spherical

membrane one may choose the dimensionless coordinates σ1 = cos(θ); σ2 = φ. To solve (57)
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is not an easy task. For this reason, we opted to tackle the membrane deformation quantization
procedure by working with the Hamiltonian density (48) and following the standard steps of the
WWGM formalism of quantum mechanics. The relationship between our proposal presented
here and the matrix formalism of M-theory [12] warrants further investigation. Furthermore,
rather than working with a non-covariant light-cone gauge and non-covariant matrix models,
it is desirable to begin with a fully covariant matrix model description of membranes based
on ternary algebraic structures and Nambu brackets [17–20]. In order to move forward
with the membrane quantization program, a starting point will be to find solutions to the
time-dependent Schrodinger equation associated with the time-dependent quartic oscillator
with q4, p4, q2p2 terms and that displays an important p ↔ q (and A(τ) ↔ B(τ)) duality

symmetry in equation (49).
Horava [21] proposed a quantum theory of membranes (upon performing a similar 2 + 1

decomposition of the world volume) such that the ground-state wavefunction of the membrane
with compact spatial topology �h reproduces the partition function of the bosonic string on
the world sheet �h. The construction involves world volume matter at quantum criticality,
described in the simplest case by Lifshitz scalars with the dynamical critical exponent z = 2.
This matter system must be coupled to a novel theory of world volume gravity (Horava–
Lifshitz gravity), also exhibiting quantum criticality with z = 2. It is warranted to explore the
relation of the work by Horava and the Moyal membrane quantization approach.
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